摘要

The spatiotemporal deformation response of a seismogenic fault to a large earthquake is of great significance to understanding the nucleation and occurrence of the next strong earthquake. The Longmeshan fault, where the 2008 Wenchuan M-S 8.0 earthquake and 2013 Lushan M-S 7.0 earthquake occurred, provides an opportunity for us to study this important issue. Based on the GPS observations, we exploit the deformation response of the Southern Segment of the Longmenshan Fault (SSLMF) to the Wenchuan earthquake. The results are as follows: (1) during the co-seismic and post-seismic processes of the Wenchuan earthquake, the deformation is dominated by a continuous pattern in the SSLMF, which is different from the rupture pattern in the middle-northern segment of the Longmenshan Fault (LMF). Quantitatively, the compressive strain present between 2008 and 2013 was equal to the strain accumulation of 69 years during the interseismic period in the SSLMF. If the statistics scope is restricted to the eastern region of the Anxian-Guanxian Fault (AGF), which covers the Lushan source area (Abbr.: Eastern Region), the value is about 25 years; (2) After the Wenchuan earthquake, the strain accumulation pattern changes significantly. First, the deformation adjustment (especially the shear deformation) in the region that crosses the Maoxian-Wenchuan Fault (MWF) and Beichuan-Yingxiu Fault (BYF) (Abbr.: Western Region) is significantly greater than that in the Eastern Region. Furthermore, the crustal shortening is significant in the Eastern Region with minor adjustments in shear deformation. Second, the azimuth angles of the principal compressive strain rate in both regions show significant adjustments, which change fast in the first year of the observation period and then turn into the stable state. In general, the deformation responses of the SSLMF reveal that the Wenchuan earthquake promotes the occurrence of the Lushan earthquake. Their differences in the spatiotemporal domain can be attributed to the influence of afterslip, viscous relaxation of the lithosphere, mechanical parameters and block movement.

  • 出版日期2018-6
  • 单位中国地震局