摘要

Modulation of pre-mRNA splicing by steric-block oligonucleotides constitutes a promising strategy for the treatment of many diseases, but requires efficient delivery to cell nuclei. In the present study, we evaluated the efficacy of a non-covalent strategy that combines a cell penetrating peptide with a lipoplex-based formulation to mediate the delivery of splice-switching oligonucleotides. The splice correcting ability of these new formulations was assessed using splice-switching oligonucleotides targeted towards the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc/705 splice correction model. Importantly, the optimal splice correcting activity was exhibited by the formulation containing both lipid and peptide components, the order of component addition in these formulations being crucial for their efficacy. Our results demonstrate that the inclusion of cationic liposomes in the formulation provides the ability to improve release from endocytic vesicles, a barrier that severely limits the efficiency of oligonucleotide delivery by cell penetrating peptides. On the other hand, cell penetrating peptides potentiate the cellular uptake and delivery of the oligonucleotides by the lipoplexes. Moreover, when combining cell penetrating peptides with the lipoplex formulations, a significant reduction in the amount of required cationic lipid could be achieved, while maintaining or even enhancing biological activity.

  • 出版日期2010-7-14