摘要

Epigenetic mechanisms underlie differentiation of pluripotent stem cells into different lineages that contain identical genomes but express different sets of cell type-specific genes. Because of high discordance rates inmonozygotic twins, epigenetic mechanisms are also implicated in development of neuropsychiatric disorders such as schizophrenia and autism. In support of this notion, increased levels of DNA methyltransferases (DNMTs), DNMT polymorphisms, and dysregulation of DNA methylation network were reported among schizophrenia patients. These results point to the importance of development of DNA methylation machinery-based models for studying the mechanism of abnormal neurogenesis due to certain DNMT alleles or dysregulated DNMTs. Achieving this goal is strongly confronted by embryonic lethality associated with altered levels of epigenetic machinery such as DNMT1 and expensive approaches in developing in vivo models. In light of literature evidence that embryonic stem cells (ESCs) are tolerant of DNMT mutations and advancement in the technology of gene targeting, it is now possible to introduce desired mutations in DNMT loci to generate suitable ESC lines that can help understand the underlying mechanisms by which abnormal levels of DNMTs or their specific mutations/alleles result in abnormal neurogenesis. In the future, these models can facilitate development of suitable drugs for treatment of neuropsychiatric disorders.

  • 出版日期2016

全文