Centromere activity in dicentric small supernumerary marker chromosomes

作者:Ewers Elisabeth; Yoda Kinya; Hamid Ahmed B; Weise Anja; Manvelyan Marina; Liehr Thomas*
来源:Chromosome Research, 2010, 18(5): 555-562.
DOI:10.1007/s10577-010-9138-7

摘要

Twenty-five dicentric small supernumerary marker chromosomes (sSMC) derived from #13/21, #14, #15, #18, and #22 were studied by immunohistochemistry for their centromeric activity. Centromere protein (CENP)-B was applied as marker for all centromeres and CENP-C to label the active ones. Three different 'predominant' activation patterns could be observed, i.e., centric fusion or either only one or all two centromeres were active. In one inherited case, the same activation pattern was found in mother and son. In acrocentric-derived sSMC, all three activation patterns could be present. In contrary, in chromosome 18-derived sSMC, only the fusion type was observed. In concordance with previous studies a certain centromeric plasticity was observed in up to 13% of the cells of an individual case. Surprisingly, the obtained data suggests a possible influence of the sSMC carrier's gender on the implementation of the predominant activation pattern; especially, only one active centromere was found more frequently in female than in male carriers. Also, it might be suggested that dicentric sSMC with one active centromere could be less stable than such with two active ones-centromeric plasticity might have an influence here, as well. Also, centromere activity in acrocentric-derived dicentrics could be influenced by heteromorphisms of the corresponding short arms. Finally, evidence is provided that the closer the centromeres of a dicentric are and if they are not fused, the more likely it was that both of them became active. In concordance and refinement with previous studies, a distance of 1.4 Mb up to about 13 Mb the two active centromere state was favored, while centromeric distance of over similar to 15 Mb lead to inactivation of one centromere. Overall, here, the first and largest ever undertaken study in dicentric sSMC is presented, providing evidence that the centromeric activation pattern is, and parental origin may be of interest for their biology. Influence of mechanisms similar or identical to meiotic imprinting in the centromeric regions of human chromosomes might be present. Furthermore, centromeric activation pattern could be at least in parts meaningful for the clinical outcome of dicentric sSMC, as sSMC stability and mosaicism can make the difference between clinically normal and abnormal phenotypes.

  • 出版日期2010-7