摘要

Background: A double-network (DN) gel, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N,N%26apos;-dimethyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. The present study investigated whether DN gel induced chondrogenic differentiation of ATDC5 cells in a maintenance medium without insulin, and whether supplementation of hyaluronic acid enhanced the chondrogenic differentiation effect of DN gel. %26lt;br%26gt;Methods: ATDC5 cells were cultured on the DN gel and the polystyrene (PS) dish in maintenance media without insulin for 21 days. Hyaluronic acid having a molecular weight of approximately 800 kDa was supplemented into the medium so that the concentration became 0.01, 0.1, or 1.0 mg/mL. The cultured cells were evaluated using immunocytochemistry for type-2 collagen and real time PCR for gene expression of type-2 collagen, aggrecan, and Sox9 at 7 and 21 days of culture. %26lt;br%26gt;Results: The cells cultured on the DN gel formed nodules and were stained with an anti-type-2 collagen antibody, and expression of type-2 collagen and aggrecan mRNA was significantly greater on the DN gel than on the PS dish surface (p %26lt; 0.05) in the hyaluronic acid-free maintenance medium. Hyaluronic acid supplementation of a high concentration (1.0 mg/mL) significantly enhanced expression of type-2 collagen and aggrecan mRNA in comparison with culture without hyaluronic acid at 21 days (p %26lt; 0.05). %26lt;br%26gt;Conclusions: The DN gel induced chondrogenic differentiation of ATDC5 cells without insulin. This effect was significantly affected by hyaluronic acid, depending on the level of concentration. There is a high possibility that hyaluronic acid plays an important role in the in vivo hyaline cartilage regeneration phenomenon induced by the DN gel.

  • 出版日期2014-7-6