摘要

Proton transfer reaction plays an essential role in a myriad of chemical and biological processes, and to reveal the choreography of the proton motion intra- and intermolecularly, a spectroscopic technique capable of capturing molecular structural snapshots on the intrinsic time scale of proton transfer motions is needed. The photoacid pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) serves as a paradigm case to dissect excited state proton transfer (ESPT) events in aqueous solution, triggered precisely by photoexcitation. We have used femtosecond stimulated Raman spectroscopy (FSRS) to yield novel insights into the ultrafast conformational dynamics of photoexcited HPTS in complex with water and acetate molecules. Marker bands attributed to the deprotonated form of HPTS (1139 cm(-1), similar to 220 fs rise) appear earlier and faster than the monomer acetic acid peak (864 cm(-1), similar to 530 fs rise), indicating that water molecules actively participate in the ESPT chain. Several key low-frequency modes at 106, 150, 195, and 321 cm(-1) have been identified to facilitate ESPT at different stages from 300 fs, 1 ps, to 6 ps and beyond, having distinctive dynamics contributing through hydrogen bonds with 0, 1, and more intervening water molecules. The time-resolved FSRS spectroscopy renders a direct approach to observe the reactive coupling between the vibrational degrees of freedom of photoexcited HPTS in action, therefore revealing the anharmonicity matrix both within HPTS and between HPTS and the neighboring acceptor molecules. The observed excited state conformational dynamics are along the ESPT multidimensional reaction coordinate and are responsible for the photoacidity of HPTS in aqueous solution.

  • 出版日期2012-9-6