摘要

The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size k, when k is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size k. A polynomial kernel is unlikely to exist for this problem. We show however that our problem has a polynomial size Turing-kernel. More precisely, the hard cases are instances of size . As a byproduct, if we forbid odd holes in addition to the bull, we show the existence of a polynomial time algorithm for the stable set problem. We also prove that the chromatic number of a bull-free graph is bounded by a function of its clique number and the maximum chromatic number of its triangle-free induced subgraphs. All our results rely on a decomposition theorem for bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme decompositions, adapted to our computational purpose.

  • 出版日期2017-3