摘要

The potential of enhancement of superhard steel and cast iron cutting tool performance on the basis of microstuctural modifications of the tool materials is studied. Hybrid machining tools with mixed diamond and cBN grains, as well as machining tool with composite nanomodified metallic binder are developed, and tested experimentally and numerically. It is demonstrated that both combination of diamond and cBN (hybrid structure) and nanomodification of metallic binder (with hexagonal boron nitride/hBN platelets) lead to sufficient improvement of the cast iron machining performance. The superhard tools with 25% of diamond replaced by cBN grains demonstrate 20% increased performance as compared with pure diamond machining tools, and more than two times higher performance as compared with pure cBN tools. Further, cast iron machining efficiency of the wheels modified by hBN particles was 80% more efficient compared to the tool with the original binder. Computational model of hybrid superhard tools is developed, and applied to the analysis of structure-performance relationships of the tools.

  • 出版日期2015-12-25