Manipulating fluorescence intensity with mechanical strains

作者:Zhao Weiwei*; Bi Kedong; Zhang Hongze; Guo Xitao; Ni Zhenhua; Chen Yunfei
来源:Materials Research Express, 2015, 2(1): 015017.
DOI:10.1088/2053-1591/2/1/015017

摘要

In this paper we show that the fluorescence of rhodamine 6G (R6G) can be manipulated by applying mechanical strains to gold nanoparticles (GNs) sandwiched in graphene/GNs/polydimethylsiloxane (graphene/GNs/PDMS) structure. The fluorescence intensity of R6G on the graphene/GNs/PDMS sample shows a gradual increase with the mechanical strain. However, the fluorescence intensity of R6G on the graphene/PDMS structure without the GNs buried in between is almost unchanged under the action of the external mechanical strain. Experiment results indicate that the gap distance change between the GNs is the main cause of the fluorescence intensity increase and graphene, as a passivation layer, does not block the energy transfer from R6G to GNs. Compared with that tuning the gap distance between GNs by preparing various GNs samples, applying macroscopic mechanical strain on GNs is a simple way to manipulate the fluorescence intensity of a specific material and brings a new perspective for optoelectronic applications.

全文