摘要

Children's urban air pollution exposures result in systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The apolipoprotein E (APOE) epsilon 4 allele is the most prevalent genetic risk for AD. We assessed whether APOE in healthy children modulates cognition, olfaction, and metabolic brain indices. The Wechsler Intelligence Scale for Children (WISC-R) and the University of Pennsylvania Smell Identification Test were administered to 50 Mexico City Metropolitan Area children (13.4 +/- 4.8 years, 28 APOE epsilon 3 and 22 APOE epsilon 4). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, myo-inositol (mI)/Cr, and NAA/mI were calculated using proton magnetic resonance spectroscopy in the white matter of the frontal and parietal lobes, hippocampus, and pons. APOE epsilon 4 versus epsilon 3 children had a reduced NAA/Cr ratio in the right frontal white matter and decrements on attention, short-term memory, and below-average scores in Verbal and Full Scale IQ (>10 points). APOE modulated the group effects between WISC-R and left frontal and parietal white matter, and hippocampus metabolites. Soap was the predominantly failed odor in urban children and, in APOE epsilon 4 versus epsilon 3 carriers, strongly correlated with left hippocampus mI/Cr ratio. APOE modulates responses to air pollution in the developing brain. APOE epsilon 4 carriers could have a higher risk of developing early AD if they reside in a polluted environment. APOE, cognition, and olfaction testing and targeted magnetic resonance spectroscopy may contribute to the assessment of urban children and their results could provide new paths toward the unprecedented opportunity for early neuroprotection and AD prevention.

  • 出版日期2015