摘要

C(60) fullerene clusters are used as a carbon source for amorphous carbon films deposition in an electron beam excited plasma. C(60) clusters are sublimated by heating a ceramic crucible containing the C(60) powders up to 850 degrees C, which is located in a highly vacuumed process chamber. The sublimated fullerene powders are injected to the electron beam excited argon plasma and dissociated to be active species that are propelled toward the substrates. Consequently, the carbon species condense as a thin film onto the negatively biased substrates that are immersed in the plasma. Deposition rates of approximately 1.0 mu m/h and the average surface roughness of 0.2 nm over an area of 400 mu m(2) are achieved. Decomposition of the C(60) fullerene after injecting into the plasma is confirmed by optical emission spectroscopy that shows existence of small carbon species such as C(2) in the plasma. X-ray diffraction pattern reveals that the microstructure of the film is amorphous, while fullerene films deposited without the plasma show crystalline structure. Raman spectroscopic analysis shows that the films deposited in the plasma are one of the types of diamond-like carbon films. Different negative bias voltages have been applied to the substrate holder to examine the effect of the bias voltage to the properties of the films. The nano-indentation technique is used for hardness measurement of the films and results in hardness up to about 28 GPa. In addition, the films are droplet-free and show superior lubricity.

  • 出版日期2011-7