Numerical characterization of plasma breakdown in reversed field pinches

作者:Peng, Yanli; Zhang, Ya; Mao, Wenzhe*; Yang, Zhoujun; Hu, Xiwei; Jiang, Wei
来源:Nuclear Fusion, 2018, 58(2): 026007.
DOI:10.1088/1741-4326/aa9721

摘要

In the reversed field pinch, there is considerable interest in investigating the plasma breakdown. Indeed, the plasma formed during the breakdown may have an influence on the confinement and maintenance in the latter process. However, up to now there has been no related work, experimentally or in simulation, regarding plasma breakdown in reversed field pinch (RFP). In order to figure out the physical mechanism behind plasma breakdown, the effects of the toroidal and error magnetic field, as well as the loop voltage have been studied. We find that the error magnetic field cannot be neglected even though it is quite small in the short plasma breakdown phase. As the toroidal magnetic field increases, the averaged electron energy is reduced after plasma breakdown is complete, which is disadvantageous for the latter process. In addition, unlike the voltage limits in the tokamak, loop voltages can be quite high because there are no requirements for superconductivity. Volt-second consumption has a small difference under different loop voltages. The breakdown delay still exists in various loop voltage cases, but it is much shorter compared to that in the tokamak case. In all, successful breakdowns are possible in the RFP under a fairly broad range of parameters.