A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment

作者:Karimi Alireza; Navidbakhsh Mahdi*; Razaghi Reza
来源:Journal of Applied Physics, 2014, 116(4): 044701.
DOI:10.1063/1.4891019

摘要

The stresses induced within plaque tissues and arterial layers during stent expansion inside an atherosclerotic artery can be exceeded from the yield stresses of those tissues and, consequently, lead to plaque or arterial layer rupture. The distribution and magnitude of the stresses in each component involved in stenting might be clearly different for different plaque types and different arterial layers. In this study, a nonlinear finite element simulation was employed to investigate the effect of plaque composition (calcified, cellular, and hypocellular) on the stresses induced in the arterial layers (intima, media, and adventitia) during implantation of a balloon expandable coronary stent into a stenosed artery. The atherosclerotic artery was assumed to consist of a plaque and normal/healthy arterial tissues on its outer side. The results indicated a significant influence of plaque types on the maximum stresses induced within the plaque wall and arterial layers during stenting but not when computing maximum stress on the stent. The stress on the stiffest calcified plaque wall was in the fracture level (2.38 MPa), whereas cellular and hypocellular plaques remain stable owing to less stress on their walls. Regardless of plaque types, the highest von Mises stresses were observed on the stiffest intima layer, whereas the lowest stresses were seen to be located in less stiff media layer. The computed stresses on the intima layer were found to be high enough to initiate a rupture in this stiff layer. These findings suggest a higher risk of arterial vascular injury for the intima layer, while a lower risk of arterial injury for the media and adventitia layers.

  • 出版日期2014-7-28