A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C(60 )nanohybrid: Experimental and theory study

作者:Keshtkar Sahar; Rashidi Alimorad*; Kooti Mohammad*; Askarieh Mojtaba; Pourhashem Sepideh; Ghasemy Ebrahim; Izadi Nosrat
来源:Talanta, 2018, 188: 531-539.
DOI:10.1016/j.talanta.2018.05.099

摘要

In this study, SnO2 quantum dots-fullerene (SnO2-QDs-C-60) nanohybrid as novel sensing material was synthesized by a simple hydrothermal method. The structure and morphology of the synthesized sample were studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared hybrid was used as gas sensors for detection of different gasses including 70 ppm H2S, 1% methane, and 1% propane at low temperatures of 100-200 degrees C. The results indicated that the SnO2 QDs-C(60 )nanohybrid has high response and high selectivity to 70 ppm H2S, 1% methane, and 1% propane gasses at low temperatures. The highest response (R-air/R-gas) of 66.0 and 5.4-70 ppm H2S and 1% methane gasses at 150 degrees C and the response of 2.7-1% propane at 200 degrees C were observed for the prepared nanohybrid gas sensor. Moreover, the prepared sensor showed a good selectivity toward H2S gas. Also, DFT calculations were used for studying the interaction of these gases with SnO2-C-60. DFT results showed that H2S has the strongest interaction and the highest effect on band-gap variation which is in a good agreement with experimental results.

  • 出版日期2018-10-1