摘要

Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6-8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes.

  • 出版日期2013