摘要

Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.

  • 出版日期2018-3-16