Direct Atomic-Orbital-Based Relativistic Two-Component Linear Response Method for Calculating Excited-State Fine Structures

作者:Egidi Franco; Goings Joshua J; Frisch Michael J; Li Xiaosong
来源:Journal of Chemical Theory and Computation, 2016, 12(8): 3711-3718.
DOI:10.1021/acs.jctc.6b00474

摘要

In this work, we present a linear-response formalism of the complex two-component Hartree-Fock Hamiltonian that includes relativistic effects within the Douglas-Kroll-Hess and the Exact-Two-Component frameworks. The method includes both scalar and spin relativistic effects in the variational description of electronic ground and excited states, although it neglects the picture-change and explicit spin-orbit contributions arising from the two-electron interaction. An efficient direct formalism of solving the complex two-component response function is also presented in this work. The presence of spin-orbit couplings in the Hamiltonian and the two-component nature of the wave function and Fock operator allows the computation of excited-state zero-field splittings of systems for which relativistic effects are dominated by the one-electron term. Calculated results are compared to experimental reference values to assess the quality of the underlying approximations. The results show that the relativistic two-component linear response methods are able to capture the excited-state zero-field splittings with good agreement with experiments for the systems considered here, with all approximations exhibiting a similar performance. However, the error increases for heavy elements and for states of high orbital angular momentum, suggesting the importance of the two-electron relativistic effect in such situations.

  • 出版日期2016-8