A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling

作者:Shaju Kuthanapillil M; Bruce Peter G*
来源:Chemistry of Materials, 2008, 20(17): 5557-5562.
DOI:10.1021/cm8010925

摘要

Stoichiometric LiMn2O4 has been synthesized using a one-pot resorcinol -formaldehyde route. The resulting material is composed of nanoparticles fused together, thus forming a porous morphology. The material when used as a cathode in a lithium battery exhibits, at 30 degrees C, an initial capacity of 131 mA center dot h g(-1) retaining a capacity of 118 mA center dot h g(-1) after 200 cycles (99.95% capacity retention per cycle) and at 50 degrees C an initial capacity of 132 mA center dot h g(-1) retaining 110 mA center dot h g(-1) after 200 cycles (99.92% capacity retention per cycle) all at a rate of C/2 (where 1C = 148 mA g(-1)), with no evidence of structural degradation. Rate capability is demonstrated by retention of 90% of the capacity at a rate of 40C compared with the capacity at C/5 rate. Cycling at a rate of 10C is associated with nearly 100% power retention after 1000 cycles (initial value of 5840 W kg(-1) (of LiMn2O4) dropping to 5828 W kg(-1) after 1000 cycles). Differences in the capacity retention on cycling between the material reported here and conventionally synthesized bulk LiMn2O4 Or nanoparticle LiMn2O4 synthesized by a different sot-gel route also yielding interconnected nanoparticles are reflected in superior structural stability, lower Mn dissolution, and relatively invariant ac impedance of our nano-LiMn2O4. Such results suggest that the material prepared using the resorcinol-formaldehyde route may possess a stabilized surface that inhibits dissolution.

  • 出版日期2008-9-9