Blood glycemia-modulating effects of melanian snail protein hydrolysates in mice with type II diabetes

作者:Choi Jae Suk; Kim Joo Wan; Park Jeong Been; Pyo Sang Eun; Hong Yong Ki; Ku Sae Kwang*; Kim Mi Ryung*
来源:International Journal of Molecular Medicine, 2017, 39(6): 1437-1451.
DOI:10.3892/ijmm.2017.2967

摘要

Freshwater animal proteins have long been used as nutrient supplements. In this study, melanian snail (Semisulcospira libertina) protein hydrolysates (MPh) were found to exert anti-diabetic and protective effects against liver and kidney damage in mice with type II diabetes adapted to a 45% kcal high-fat diet (HFD). The hypoglycemic, hepatoprotective and nephroprotective effects of MPh were analyzed after 12 weeks of the continuous oral administration of MPh at 125, 250 and 500 mg/kg. Diabetic control mice exhibited an increase in body weight, and blood glucose and insulin levels, with a decrease in serum high-density lipoprotein (HDL) levels. In addition, an increase in the regions of steatohepatitis, hepatocyte hypertrophy, and lipid droplet deposit-related renal tubular vacuolation degenerative lesions were detected, with noticeable expansion and hyperplasia of the pancreatic islets, and an increase in glucagon-and insulin-producing cells, insulin/glucagon cell ratios in the endocrine pancreas and hepatic lipid peroxidation, as well as decreased zymogen contents. Furthermore, a deterioration of the endogenous antioxidant defense system was observed, with reduced glucose utilization related hepatic glucokinase (GK) activity and an increase in hepatic gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) activity. However, all of these diabetic complications were significantly inhibited by oral treatment with MPh in a dose-dependent manner. In addition, the marked dose-dependent inhibition of hepatic lipid peroxidation, the depletion of the liver endogenous antioxidant defense system, and changes in hepatic glucose-regulating enzyme activities were also observed. The results of this study suggest that MPh exerts potent anti-diabetic effects, along with the amelioration of related complications in mice with type II diabetes. The overall effects of MPh at a dose of 125 mg/kg on HFD-induced diabetes and related complications were similar or more potent than those of metformin (250 mg/kg).

  • 出版日期2017-6