摘要

We propose a multistage quantum wavepacket dynamical treatment for the study of delocalized electronic systems as well as electron transport through donor-bridge-acceptor systems such as those found in molecular-wire/electrode networks. The full donor-bridge-acceptor system is treated through a rigorous partitioning scheme that utilizes judiciously placed offsetting absorbing and emitting boundary conditions. These facilitate a computationally efficient and potentially accurate treatment of the long-range coupling interactions between the bridge and donor/acceptor systems and the associated open system boundary conditions. Time-independent forms of the associated, partitioned equations are also derived. In the time-independent form corresponding to the bridge system, coupling to donor and acceptor, that is long-range interactions, is completely accounted. For the time-dependent study, the quantum dynamics of the electronic flux through the bridge-donor/acceptor interface is constructed using an accurate and efficient representation of the discretized quantum-mechanical free-propagator. A model for an electrode-molecular wire-electrode system is used to test the accuracy of the scheme proposed. Transmission probability is obtained directly from the probability density of the electronic flux in the acceptor region. Conductivity through the molecular wire is computed using a wavepacket flux correlation function.

  • 出版日期2010-7-28