摘要

Multi-discipline design optimization method is adopted based on analytical target cascading to establish a two-layer optimization architecture for a typical topology structure of powertrain, in which the system layer uses genetic algorithm to minimize the energy consumption of electric vehicle and the manufacturing cost of powertrain with the power performance of electric vehicle as constraint;whereas in subsystem/component layer, sequential quadratic programming is adopted to minimize the manufacturing cost of traction motor, while meeting its performance requirements set in system layer. Then Willans line modeling method is used to build a parameter simulation model for traction motor with a simulation performed. The results show that the topology structure of wheel-hub drive powertrain has the advantages in energy consumption and manufacturing cost, but it is requested to have a traction motor with much higher torque and power.

全文