Mechanical properties of frozen rock mass with two diagonal intersected fractures

作者:Yang, Hao*; Shan, Renliang; Zhang, Jinxun; Wu, Fumei; Guo, Zhiming
来源:International Journal of Mining Science and Technology, 2018, 28(4): 631-638.
DOI:10.1016/j.ijmst.2018.02.005

摘要

Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out a series of triaxial compression tests on rock-like specimens with two crossed fractures under negative temperature, concluded the following conclusions. The strength and failure modes of rock mass are significantly influenced by the dips of two crossed fractures. The strength of rock mass with two fractures cannot simply be estimated using the method that was developed for the rock mass with a single fracture. When the intersecting angle is less than 30 degrees, the failure plane initiates at the tip of "artificial ruptures" and extends to the upper and lower ends of the specimen. In case of a higher dip and intersecting angle ranging from 30 degrees to 60 degrees, the failure plane propagates along one of these two fractures. The mechanical parameters of rock mass are not only related to the trace length, but also depend on the trace length ratio. One could roughly calculate the strength parameters using the approximation proposed in this paper. For the rock mass with a trace length ratio <0.3 (short trace length/long trace length), the failure mode is dependent on the fracture with a longer trace length. When the trace length becomes significant and the trace length ratio approximates to 1, the failure plane propagates along two fractures, where an X-shaped failure pattern is presented. For the rock mass with moderate fractures and a trace length ratio of approximately 1, the failure mode is independent on fractures, which is similar to the damage pattern of intact rock. The strength and elastic modulus of rock mass decrease with the increase of spacing between fractures, while Poisson's ratio is independent on the spacing. The failure mode can be determined by the area of triangle created by two fractures. Damage occurs at the smaller triangle area first, and propagates with the two sides of the larger triangle. (C) 2018 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).