摘要

The bilevel programming problem is strongly NP-hard and non-convex, which implies that the problem is very challenging for most canonical optimization approaches using single-point search techniques to find global optima. In the present paper, a class of nonlinear bilevel programming problems are considered where the follower is a linear fractional program. Based on a novel coding scheme, a genetic algorithm with global convergence was developed. First, potential bases of the follower's problem were taken as individuals, and a genetic algorithm was used to explore these bases. In addition, in order to evaluate each individual, a fitness function was presented by making use of the optimality conditions of linear fractional programs. Also, the fitness evaluation, as a sub-procedure of optimization, can partly improve the leader's objective. Finally, some computational examples were solved and the results show that the proposed algorithm is efficient and robust.