摘要

In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed under an applied pressure 30, 60 and 90 MPa in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in the 5-step casting were determined based on thermal histories throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTCs were evaluated using the polynomial curve fitting method and numerical inverse method. For numerical inverse method, a solution algorithm was developed based on the function specification method to solve the inverse heat conduction equations. The IHTCs curves for five steps versus time were displayed. As the applied pressures increased, the IHTC peak value of each step was increased accordingly. It can be observed that the peak IHTC value decreased as the step became thinner. Furthermore, the accuracy of these curves was analyzed by the direct modeling calculation. The results indicated that heat flux and IHTCs determined by the inverse method were more accurately than those from the extrapolated fitting method.

  • 出版日期2011-8