A model for studying the energetics of sustained high frequency firing

作者:Joos Bela*; Markham Michael R; Lewis John E; Morris Catherine E
来源:PLos One, 2018, 13(4): e0196508.
DOI:10.1371/journal.pone.0196508

摘要

Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O-2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane E-Na and E-K and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200-600 Hz) we calculate frequency-dependent "Na+-entry budgets" for an electrocyte AP as a surrogate for required 3Na(+)/2K(+)-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O-2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis.

  • 出版日期2018-4-30