摘要

Seismic exploration is an important means of the resource exploration. With the increasing of the demand for oil, gas and mineral resources, the resources which are easy to explore are reducing. At the same time, the high signal to noise ratio and the high quality seismic data is required with the continuous improvement of the accuracy of seismic exploration. The characteristics of complex noise in the seismic record are needed to be analyzed in detail in order to suppress the random noise and achieve the preserved amplitude processing as much as possible. The paper researches the Gaussianity and stationarity of the random noise in the seismic exploration of land area in China. The research areas are plain with sandstone structure. First, a theoretical model verifies the effectiveness that the Shapiro-Wilk test method is used in Gaussian statistical research, and the combination of surrogate data and time-frequency analysis tests stationarity. Then, there are 98.54% of the record channels which refuse the assumption of the Gaussian noise, and 25.6% of the record channels which don't meet the stationarity noise analysis by the above method in the research area through the statistical analysis of the seismic noise. Finally, we discuss the causes of non-Gaussianity and quasi-stationarity, and analyze the application of judging the stationarity in the denoising processing.