摘要

Quantitative, three-dimensional surface imaging is one of the most significant advantages of atomic force microscopy (AFM). The imaging speed, however, is its major issue, due to the limited response time of the feedback loop. We present a dynamically adjusted scanning speed feature implemented on a commercial AFM instrument. The signals available in the system are utilized for that purpose. The auxiliary module controls the scanning speed in order to provide the necessary time to restore the tip-sample distance, which may deviate due to insufficient settling time. The solution allows the measurement to be performed with a relatively fast scanning rate and the desired imaging quality. Quantitative analysis of the results shows the relation between the imaging error and the settings of the system. It is shown that the image is acquired faster and with better imaging quality than using the constant speed method. Also, the data are presented showing a reduction of the topographical crosstalk in the phase imaging feature, as an example of the utilization of this feature in advanced AFM modes.

  • 出版日期2014-4