摘要

This paper numerically investigates the hyperbolic thermoelastic problem of an annular fin. The ambient convection heat transfer coefficient of the fin is assumed to be spatially varying. The major difficulty in dealing with such problems is the suppression of numerical oscillations in the vicinity of a jump discontinuity. An efficient numerical scheme involving hybrid application of Laplace transform and control volume method in conjunction with hyperbolic shape functions is used to solve the linear hyperbolic heat conduction equation. The transformed nodal temperatures are inverted to the physical quantities by using numerical inversion of the Laplace transform. Then the stress distributions in the annular fin are calculated subsequently. The results in the illustrated examples show that the application of hyperbolic shape functions can successfully suppress the numerical oscillations in the vicinity of jump discontinuities.

  • 出版日期2012-6