摘要

In the present work, a high-performance liquid chromatography-tandem mass spectrometry method has been developed for the residue analysis of chloramphenicol (CAP) in several food matrices. Following the addition of D(5)-CAP as internal standard, egg, honey, and milk were extracted and cleaned by means of solid-phase extraction, utilizing multi-walled carbon nanotubes as sorbent. The extracts were separated on a Halo fused-core C18 column (50 mm x 2.1 mm, 2.7 mu m) and quantified by a 4000 Q-trap mass spectrometer equipped with a TurboIonSpray (TM) interface using electrospray ionization and multiple-reaction monitoring mode. The method validation was performed according to the criteria of Commission Decision 2002/657/EC. The decision limit (CC alpha) and detection capability (CC beta) of CAP in milk were calculated for m/z 320.8 > 151.9. Due to the existence of slight signal suppression, quantification was performed by matrix-matched calibration curves, ranging from 0.1 to 100 ng mL(-1), with regression coefficients of 0.9993, 0.9998, and 0.9997 for egg, honey, and milk, respectively. Mean recoveries of the CAP ranged from 95.8% to 102.3%, with the corresponding intra- and inter-day variation (relative standard deviation) less than 7.13% and 8.89%, respectively. The limit of detection and limit of quantification of the method were also reported. This method successfully applied to several food matrixes (egg, honey, and milk) and can serve as a monitoring tool to avoid unacceptable levels of residues of CAP entering the food chain.