摘要

Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH(4)-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of DOM fluorescence. Seasonal DOM slug additions were conducted in three headwater streams draining a bog, forested wetland, and upland forest using DOM collected by leaching watershed soils. We also used DOM collected from bog soil and salmon carcasses to perform additions in the upland forest stream. DOC uptake velocity ranged from 0.010 to 0.063 mm s(-1) and DON uptake velocity ranged from 0.015 to 0.086 mm s(-1), which provides evidence for the whole-stream uptake of allochthonous DOM. These findings imply that wetlands could potentially be an important source of DOM to support stream heterotrophic production. There was no significant difference in the uptake of DOC and DON across the soil leachate additions (P > 0.05), although differential uptake of DOM fractions was observed as protein-like fluorescence was removed from the water column more efficiently than bulk DOC and DON (P < 0.05). Moreover, PARAFAC analysis of DOM fluorescence showed that protein-like fluorescence decreased downstream during all DOM additions, whereas humic-like fluorescence did not change. This differential processing in added DOM suggests slow and fast turnover pools exist for aquatic DOM. Taken together, our findings argue that DON could potentially fill a larger role in satisfying biotic N demand in oligotrophic headwater streams than previously thought.

  • 出版日期2009-8