摘要

Ecosystem-based fisheries management seeks to consider trade-offs among management objectives for interacting species, such as those that arise through predator-prey linkages. In particular, fisheries-targeting forage fish (small and abundant pelagic fish) might have a detrimental effect on fisheries-targeting predators that consume them. However, complexities in ecological interactions might dampen, negate, or even reverse this trade-off, because small pelagic fish can be important predators on egg stages of piscivorous fish. Further, the strength of this trade-off might depend on the extent to which piscivorous fish targeted by fisheries regulate forage species productivity. Here, we developed a novel delay-differential bioeconomic model of predator-prey and fishing dynamics to quantify how much egg predation or weak top-town control affects the strength of trade-off between forage and piscivore fisheries, and to measure how ecological interactions dictate policies that maximize steady-state profits. We parameterized the model based on ecological and economic data from the North Sea Atlantic cod (Gadus morhua) and Atlantic herring (Clupea harengus). The optimal policy was very sensitive to the ecological interactions (either egg predation or weak top-down control of forage by predators) at relatively low forage prices but was less sensitive at high forage fish prices. However, the optimal equilibrium harvest rates on forage and piscivores were not substantially different from what might be derived through analyses that did not consider species interactions. Applying the optimal multispecies policy would produce substantial losses (>25%) in profits in the piscivore fishery, and the extent of loss was sensitive to ecological scenarios. While our equilibrium analysis is informative, a dynamic analysis under similar ecological scenarios is necessary to reveal the full economic and ecological benefits of applying ecosystem-based fishery management policies to predator-prey fishery systems.

  • 出版日期2015-6