Analysis of Gravity Waves Generated at the Top of a Drainage Flow

作者:Viana Samuel*; Terradellas Enric; Yaguee Carlos
来源:Journal of the Atmospheric Sciences, 2010, 67(12): 3949-3966.
DOI:10.1175/2010JAS3508.1

摘要

Drainage or katabatic flows are common mesoscale circulations established as a result of differential radiative cooling of near-surface air masses in sloping terrain. The initial irruption of these flows, with sudden shifts in wind speed and direction, may result in vertical displacements of air parcels from their equilibrium position, which prove to be a common source of internal gravity waves. This paper illustrates this mechanism and describes the main features of the oscillations following the study of observational data gathered throughout one night during the Stable Atmospheric Boundary Layer Experiment in Spain 2006 (SABLES2006) field campaign. Pressure differences, measured by microbarometers set at different levels of a tower, help to interpret the evolution of other atmospheric variables, provide a detailed picture of the irruption of a drainage current, and reveal the formation of gravity waves at its top. The main parameters of the waves are derived from wavelet cross correlation of pressure time series, recorded by a surface array of microbarometers. The analysis yields, among other parameters, the horizontal component of the phase and group velocities of the gravity waves, which compare well with the velocity of irruption of the drainage current. Wavelet and other multiresolution techniques are also applied to sonic anemometer records to study the interaction between turbulence and larger-scale motions. The analysis shows evidence of heat flux divergence induced by the gravity waves, which may constitute a key factor for the vertical thermal profile in the nocturnal boundary layer (NBL) in situations of weak turbulence and important wave activity.

  • 出版日期2010-12