An electrically pumped polariton laser

作者:Schneider, Christian; Rahimi-Iman, Arash; Kim, Na Young; Fischer, Julian; Savenko, Ivan G.; Amthor, Matthias; Lermer, Matthias; Wolf, Adriana; Worschech, Lukas; Kulakovskii, Vladimir D.; Shelykh, Ivan A.; Kamp, Martin; Reitzenstein, Stephan; Forchel, Alfred; Yamamoto, Yoshihisa; Hoefling, Sven
来源:Nature, 2013, 497(7449): 348-352.
DOI:10.1038/nature12036

摘要

Conventional semiconductor laser emission relies on stimulated emission of photons(1,2), which sets stringent requirements on the minimum amount of energy necessary for its operation(3,4). In comparison, exciton-polaritons in strongly coupled quantum well microcavities(5) can undergo stimulated scattering that promises more energy-efficient generation of coherent light by 'polariton lasers'(3,6). Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature(7-12), and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density(12,13). Even though polariton diodes have been realized(14-16), electrically pumped polariton laser operation, which is essential for practical applications, has not been achieved until now. Here we present an electrically pumped polariton laser based on a microcavity containing multiple quantum wells. To prove polariton laser emission unambiguously, we apply a magnetic field and probe the hybrid light-matter nature of the polaritons. Our results represent an important step towards the practical implementation of polaritonic light sources and electrically injected condensates, and can be extended to room-temperature operation using wide-bandgap materials.

  • 出版日期2013-5-16