摘要

Linearized numerical stability bounds for solving the nonlinear time-dependent Schrodinger equation (NLSE) using explicit finite-differencing are shown. The bounds are computed for the fourth-order Runge-Kutta scheme in time and both second-order and fourth-order central differencing in space. Results are given for Dirichlet, modulus-squared Dirichlet, Laplacian-zero, and periodic boundary conditions for one, two, and three dimensions. Our approach is to use standard Runge-Kutta linear stability theory, treating the nonlinearity of the NLSE as a constant. The required bounds on the eigenvalues of the scheme matrices are found analytically when possible, and otherwise estimated using the Gershgorin circle theorem.

  • 出版日期2013-9