摘要

In order to search for a novel sensor to detect and control exposure to hydrogen cyanide (HCN) pollutant molecule in environments, the reactivities of pristine and silicon-doped (Si-doped) (8, 0) single-walled boron nitride nanotubes (BNNTs) towards the HCN molecule are investigated by performing density functional theory (DFT) calculations. The HCN molecule presents strong chemisorption on both the silicon-substituted boron defect site and the silicon-substituted nitrogen defect site of the BNNT, which is in sharp contrast to its weak physisorption on pristine BNNT. A remarkable charge transfer occurs between the HCN molecule and the Si-doped BNNT as proved by the electronic charge densities. The calculated data for the electronic density of states (DOSs) further indicate that the doping of the Si atom improves the electronic transport property of the BNNT, and increases its adsorption sensitivity towards the HCN molecule. Based on calculated results, the Si-doped BNNT is expected to be a potential resource for detecting the presence of toxic HCN.

  • 出版日期2009-12-16
  • 单位山东警察学院; 山东大学