摘要

Dynamics response of an elliptical cavity and a crack (on different sides) near bimaterials interface under incident out-plane waves is studied by applying the methods of complex variables and Green's function. Firstly, based on "conjunction," the analytical model is divided along the horizontal interface into an elastic half-plane possessing an elliptical cavity and a full elastic half-plane containing a crack. Using complex variables, the scattering displacement field of the half-plane containing an elliptical cavity under incident out-plane waves is then derived. According to the method of Green's function, the corresponding Green's functions of two half-planes impacted by an out-plane source load are further deduced. Combined with "crack division," a crack at the full elastic the half-plane is created, and thus, expressions of displacement and stress are derived while the cavity coexists with the crack. Undetermined antiplane forces are loaded on the horizontal surfaces for conjunction of two sections and then solved by a series of Fredholm integral equations on account of continuity conditions of the interface. Finally, this paper focuses on the discussion of the influence law of different parameters on the dynamics response of complex defects near bimaterials interface by comprehensive numerical results.