摘要

Annular seals have significant effects on the hydraulic and rotordynamic performances of turbomachinery. In this paper, an analysis method for calculating the leakage flow rates and dynamic characteristics of liquid annular seals with herringbone grooves on the rotor is proposed and verified. Leakage flow rates and dynamic characteristics of the model seals under different operating conditions are theoretically analysed and compared with those of plain and spiral-grooved seals of the same size. In addition, the influence of geometric parameters such as spiral angle and the lengths of the constituent parts on the sealing and rotordynamic coefficients of seals with herringbone grooves are also discussed. The results show that seals with herringbone grooves have better sealing performance, while providing better support actions and damping characteristics than the other two seal types under the same operating conditions. The seal geometric parameters including spiral angle, the lengths of the constituent parts and the clearance value have a significant influence on the dynamic characteristics of seals with herringbone grooves.