摘要

The growing demand for haptic technologies in recent years has motivated novel approaches in developing haptic interfaces and control algorithms. Semi-active haptic interfaces, in general, have the advantage of addressing safety concerns which adversely affect their active counterparts. This paper presents the development of a planar semi-active haptic interface using magnetorheological (MR) dampers. The ability of MR dampers to produce controllable resistance forces is the key reason for their utilization in the proposed haptic interface. The proposed planar semi-active haptic interface consists of linear and rotary MR dampers. Each of the MR dampers is modeled experimentally using the Bouc-Wen model. A haptic rendering algorithm called the digital resistance map (DRM) is also developed to control MR dampers. DRM is a high-fidelity haptic rendering algorithm, and proved to be effective to create comprehensive force feedback for operators. MATLAB/Simulink (R) is used for implementing several DRM scenarios for generating haptic enabled virtual environments. The experimental results demonstrate the effectiveness of the proposed haptic interface and rendering algorithm.

  • 出版日期2014-5

全文