摘要

To confirm associations with a large number of single nucleotide polymorphisms (SNPs), each with only a small effect size, as hypothesized in the polygenic theory for schizophrenia, the International Schizophrenia Consortium (2009, Nature 460:748-752) proposed a polygenic risk score (PRS) test and demonstrated its effectiveness when applied to psychiatric disorders. The basic idea of the PRS test is to use a half of the sample to select and up-weight those more likely to be associated SNPs, and then use the other half of the sample to test for aggregated effects of the selected SNPs. Intrigued by the novelty and increasing use of the PRS test, we aimed to evaluate and improve its performance for GWAS data. First, by an analysis of the PRS test, we point out its connection with the Sum test [Chapman and Whittaker, , Genet Epidemiol 32:560-566; Pan, , Genet Epidemiol 33:497-507]; given the known advantages and disadvantages of the Sum test, this connection motivated the development of several other polygenic tests, some of which may be more powerful than the PRS test under certain situations. Second, more importantly, to overcome the low statistical efficiency of the data-splitting strategy as adopted in the PRS test, we reformulate and thus modify the PRS test, obtaining several adaptive tests, which are closely related to the adaptive sum of powered score (SPU) test studied in the context of rare variant analysis [Pan etal., 2014, Genetics 197:1081-1095]. We use both simulated data and a real GWAS dataset of alcohol dependence to show dramatically improved power of the new tests over the PRS test; due to its superior performance and simplicity, we recommend the whole sample-based adaptive SPU test for polygenic testing. We hope to raise the awareness of the limitations of the PRS test and potential power gain of the adaptive SPU test.

  • 出版日期2015-5