摘要

The scale dependences of topological relations are caused by the changes of spatial objects at different scales, which are induced by the reduction of attributes. Generally, the detailed partitions and multi-scale attributes are stored in spatial databases, while the coarse partitions are not. Consequently, the detailed topological relations can be computed and regarded as known information, while the coarse relations stay unknown. However, many applications (e.g., multi-scale spatial data query) need to deal with the topological relations at multiple scales. In this study new methods are proposed to model and derive the scale dependences of topological relations between lines and multi-scale region partitions. The scale dependences of topological relations are modeled and used to derive the relations between lines and coarse partitions from the relations about the detailed partitions. The derivation can be performed in two steps. At the first step, the topological dependences between a line and two meeting, covered and contained regions are computed and stored into composition tables, respectively. At the second step, a graph is used to represent the neighboring relations among the regions in a detailed partition. The scale dependences and detailed relations are then used to derive topological relations at the coarse level. Our methods can also be extended to handle the scale dependences of relations about disconnected regions, or the combinations of connected and disconnected regions. Because our methods use the scale dependences to derive relations at the coarse level, rather than generating coarse partition and computing the relations with geometric information, they are more efficient to support scale-dependent applications.