摘要

Atmospheric boundary layers with stable stratification include a variety of small-scale nonturbulent motions such as waves, microfronts, and other complex structures. When the thermal stratification becomes strong, the presence of such motions could affect the turbulent mixing to a large extent, and common similarity theory that is used to describe weakly stable conditions may become unreliable. The authors apply a statistical clustering methodology based on a bounded variation, finite-element method (FEM-BV) to characterize the interaction between small-scale nonturbulent motions and turbulence. The clustering methodology achieves a multiscale representation of nonstationary turbulence data by approximating them through an optimal sequence of locally stationary multivariate autoregressive factor model (VARX) processes and some slow hidden process switching between them. The clustering method is used to separate periods with different influence of the nonturbulent motions on the vertical velocity fluctuations. The methodology can be used in a later stage to derive a stochastic parameterization for the interactions between nonturbulent and turbulent motions.

  • 出版日期2015-4