摘要

The current work presents an experimentally validated analytical model for low-velocity impact between a sphere and a plate. The model accounts for plastic deformation as well as flexural vibrations. The elastic phases are modeled with a nonlinear Hertzian contact model, and the plastic phase is linearized with a non-homogeneous expression. The results are compared against newly carried out experiments. The model well captures the effect of plate thickness-to-sphere diameter ratio, impact velocity, and material properties. The model's generalized framework allows consideration for various expressions of contact parameters, critical velocity, and residual indentation. Moreover, the proposed methodology can be easily incorporated into particle-based or discrete element modeling approaches for granular flows to evaluate the real-time coefficient of restitution as opposed to assuming the constant value beforehand. Simplified relations are provided to assist in evaluating the coefficient of restitution.

  • 出版日期2017-5