摘要

Partial bladder outlet obstruction (PBOO) in rabbits causes free radical production through ischemia and reperfusion within the bladder smooth muscle and mucosa. We had previously shown that pretreatment of rabbits with a combination of alpha-lipoic acid (alpha LA) and coenzyme Q10 (CoQ) protected the bladder from contractile and metabolic dysfunctions mediated by PBOO. In this study, we examined the ability of pretreatment with alpha LA and CoQ combination in rabbits to protect the bladder from contractile damage mediated by either hydrogen peroxide (H(2)O(2)) or in vitro ischemia-reperfusion (I/R) which represents two in vitro models of oxidative damage.
Eight adult male New Zealand white rabbits were pretreated with CoQ and alpha LA orally for four weeks. Eight adult male control rabbits were given vehicle. Eight full-thickness bladder strips were isolated from each of 4 treated and 4 control rabbit bladders, and a dose-response curve to H(2)O(2) (0.1-0.8%) was generated. Similarly, isolated strips of bladder from the remaining 4 control and 4 treated rabbits were subjected to 1 h of ischemia (no oxygen without glucose) followed by 2 h of incubation in oxygenated buffer with glucose. The effects on the contractile responses to field stimulation (FS) at 2, 8, and 32 Hz, carbachol, and potassium chloride (KCl) were determined.
H(2)O(2) reduced the contractile responses to KCl and carbachol to a significantly greater degree than to FS, whereas I/R reduced the contractile responses to FS to a significantly greater degree than to KCl and carbachol. Pretreatment of the rabbits with the combination of CoQ and alpha LA significantly protected the bladder from the damaging effects of I/R, but had virtually no effect on the damaging effects of H(2)O(2).
Although both H(2)O(2) and I/R are in vitro models of oxidative free radical damage to bladder smooth muscle, they have significantly different methods of action and different sensitivities to antioxidants.

  • 出版日期2011-3