摘要

Recently a new kinetic model was presented in the literature, which describes localized electronic recombination in donor-acceptor pairs of luminescent materials. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. Two versions of the model were presented which were found to be in good agreement with each other, namely an exact model that evolves both in space and in time, and an approximate semi-analytical model evolving only in time. The model simulated successfully both thermally stimulated luminescence (TL) and optically stimulated luminescence (OSL), and also demonstrated the power law behavior for simulated OSL signals. This paper shows that the system of simultaneous differential equations in the semi-analytical model can be approximated to an excellent precision by a single differential equation. Furthermore, analytical solutions are obtained for this single differential equation, and for four different experimental modes of stimulation: TL, OSL, linearly modulated OSL (LM-OSL) and isothermal TL processes. The exact form of the power law for the model is found in analytical form for both OSL and isothermal TL processes. The analytical equations are tested by successfully fitting typical infrared stimulated luminescence (IRSL) signals, as well as experimental TL glow curves from feldspar samples. The dimensionless number density of acceptors in the model is estimated from fitting the experimental IRSL and TL data. The analytical expressions derived in this paper apply also to stimulated emission via the excited state of the donor-acceptor system. However, the same analytical expression, with different numerical values for its constants, can also be applied in the case of ground state tunneling, with important implications for luminescence dating.

  • 出版日期2013-5