摘要

In the present study, degradation of acetaminophen (ACT) aqueous solution was investigated up to an absorbed gamma-irradiation dose of 1000 Gy. The effects of various additives on the degradation efficiency of ACT were also studied. The results showed that ACT degradation was increased with the increase of an absorbed dose. Based on spectrophotometric analysis, 82.5% degradation of the initial ACT concentration (9.98 x 10(-5) M) was easily achieved at an absorbed dose of 1000 Gy. The decay of ACT followed pseudo-first order reaction kinetics at different initial concentrations. The radiation chemical yield (G-value) decreased with the increase of an absorbed dose, however at a specific absorbed dose G-values increased with the increase of ACT initial concentration. The addition of H2O2 in the range of 0.1-0.7% was effective for degradation of ACT. The degradation of ACT was inhibited in both acidic and basic solutions while maximium degradation effiency was acheived at nearly neautral solution pH, 7.6. The degradation process was markedly enhanced under oxidative conditions while strongly restrained under reductive conditions, which suggests the key role of oxidative radicals ((OH)-O-center dot) in the degradation of ACT.

  • 出版日期2018-4