摘要

A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen-Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely results from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.