摘要

The introduction of pervasive and ubiquitous instrumentation within Internet of Things (IoT) leads to unprecedented real-time visibility (instrumentation), optimization and fault-tolerance of the power grid, traffic, transportation, water, oil & gas, to give some examples. Interconnecting those distinct physical, people, and business worlds through ubiquitous instrumentation, even though still in its embryonic stage, has the potential to create intelligent IoT solutions that are much greener, more efficient, comfortable, and safer. An essential new direction to materialize this potential is to develop comprehensive models of such systems dynamically interacting with the instrumentation in a feed-back control loop. We describe here opportunities in applying cognitive computing on interconnected and instrumented worlds (Cognitive Internet of Things-CIoT) and call out the system-of-systems trend among distinct but interdependent worlds, and Dynamic Data-Driven Application System (DDDAS)-based methods for advanced understanding, analysis, and real-time decision support capabilities with the accuracy of full-scale models.