A Resequence Analysis of Genomic Loci on Chromosomes 1q32.1, 5p15.33, and 13q22.1 Associated With Pancreatic Cancer Risk

作者:Parikh Hemang; Jia Jinping; Zhang Xijun; Chung Charles C; Jacobs Kevin B; Yeager Meredith; Boland Joseph; Hutchinson Amy; Burdett Laura; Hoskins Jason; Risch Harvey A; Stolzenberg Solomon Rachael Z; Chanock Stephen J; Wolpin Brian M; Petersen Gloria M; Fuchs Charles S; Hartge Patricia; Amundadottir Laufey*
来源:Pancreas, 2013, 42(2): 209-215.
DOI:10.1097/MPA.0b013e318264cea5

摘要

Objective: The objective of this study was to fine-map common pancreatic cancer susceptibility regions.
Methods: We conducted targeted Roche-454 resequencing across 428 kb in 3 genomic regions identified in genome-wide association studies (GWAS) of pancreatic cancer, on chromosomes 1q32.1, 5p15.33, and 13q22.1.
Results: An analytical pipeline for calling genotypes was developed using HapMap samples sequenced on chr5p15.33. Concordance to 1000 Genomes data for chr5p15.33 was greater than 96%. The concordance for chr1q32.1 and chr13q22.1 with pancreatic cancer GWAS data was greater than 99%. Between 9.2% and 19.0% of variants detected were not present in 1000 Genomes for the respective continental population. The majority of completely novel single-nucleotide polymorphisms (SNPs) were less common (minor allele frequency [MAF], <= 5%) or rare (MAF, <= 2%), illustrating the value of enlarging test sets for discovery of less common variants. Using the data set, we examined haplotype blocks across each region using a tag SNP analysis (r(2) > 0.8 for MAF of >= 5%) and determined that at least 196, 243, and 63 SNPs are required for fine-mapping chr1q32.1, chr5p15.33, and chr13q22.1, respectively, in European populations.
Conclusions: We have characterized germline variation in 3 regions associated with pancreatic cancer risk and show that targeted resequencing leads to the discovery of novel variants and improves the completeness of germline sequence variants for fine-mapping GWAS susceptibility loci.

  • 出版日期2013-3
  • 单位NIH