摘要

Soft clay exhibits creep behavior, but simple methods of surcharge preload assessment generally do not take into account creep during primary consolidation. Because Yin-Graham's model can predict both primary and secondary settlement, it is employed in this paper to obtain the formulae for critical settlement at the unloading time during surcharge preload and for final settlement at the end of the service life. Because "aged" soft natural clay exhibits obvious apparent preconsolidation pressure during a long-term sedimentary history as a result of creep effects and because the field permeability coefficient is considerably larger than the laboratory permeability coefficient, most field measurements indicate that the theoretical excess pore pressure based on Terzaghi's theory is greater than the measured excess pore pressure even in soft natural clay with obvious viscous behavior. Because of the widespread application of the degree of consolidation in terms of effective stress based on Terzaghi's theory in real preload projects, the analytical solution for the surcharge preload period subject to creep is derived through the combination of Yin-Graham's model and Terzaghi's theory for consolidation. Compared with the existing solution considering secondary settlement, the formula for the preload period presented in this paper is easily applied to assess the preload period using a chart. The case study described indicates that when the consolidation parameters of Terzaghi's theory are calculated from field-measured excess pore pressure in preload tests, the surcharge preload period determined as described in this paper is suitable for preload design and performance.