摘要

Wire delays and leakage energy consumption are both growing problems in the design of large on chip caches built in deep submicron technologies. D-NUCA caches (Dynamic-Nonuniform Cache Architecture) exploit an aggressive subbanking of the cache and a migration mechanism to speed up frequently accessed data access latency, to limit wire delays effects on performances. Way Adaptable D-NUCA is a leakage power reduction technique specifically suited for D-NUCA caches. It dynamically varies the portion of the powered-on cache area based on the running workload caching needs, but it relies on application dependent parameters that must be evaluated off-line. This limits the effectiveness of Way Adaptable D-NUCA in the general purpose, multiprogrammed environment. In this paper, we propose a new power reduction technique for D-NUCA caches, which still adapts the powered-on cache area to the needs of the running workload, but it does not rely on application-dependent parameters. Results show that our proposal saves around 49 % of total cache energy consumption in a single core environment and 44 % in CMP environment. By adding a timer, it performs similarly to previously proposed techniques to reduce leakage power consumptions, and outperforms them when they are applied in a workload independent manner.

  • 出版日期2014-4

全文